FITS FOR K_L^0 CP-VIOLATION PARAMETERS Revised April 1998 by T.G. Trippe (LBNL). In recent years, K_L^0 CP-violation experiments have improved our knowledge of CP-violation parameters and their consistency with the expectations of CPT invariance and unitarity. For definitions of K_L^0 CP-violation parameters and a brief discussion of the theory, see the article "CP Violation" by L. Wolfenstein in Section 12 of this Review. This note describes our two fits for the CP-violation parameters in $K_L^0 \to \pi^+\pi^-$ and $\pi^0\pi^0$ decay, one for the phases ϕ_{+-} and ϕ_{00} , and another for the amplitudes $|\eta_{+-}|$ and $|\eta_{00}|$. Fit to ϕ_{+-} , ϕ_{00} , $\Delta\phi$, Δm , and τ_{s} data: We perform a joint fit to the data on ϕ_{+-} , ϕ_{00} , the phase difference $\Delta \phi = \phi_{00} - \phi_{+-}$, the $K_L^0 - K_S^0$ mass difference Δm , and the K_S^0 mean life τ_S , including the effects of correlations. Measurements of ϕ_{+-} and ϕ_{00} are highly correlated with Δm and τ_s . Some measurements of $\tau_{\scriptscriptstyle S}$ are correlated with $\Delta m.$ The correlations are given in the footnotes of the ϕ_{+-} and ϕ_{00} sections of the K_L^0 Particle Listings and the τ_S section of the K^0_S Particle listings. In editions of the Review prior to 1996, we adjusted the experimental values of ϕ_{+-} and ϕ_{00} to account for correlations with Δm and τ_S but did not include the effects of these correlations when evaluating Δm and τ_s . When a joint fit including these correlations is done, the ϕ_{+-} measurements have a strong influence on the fitted value of Δm . This is because the CERN NA31 vacuum regeneration experiments (CAROSI 90 [1] and GEWENIGER 74B [2]), the Fermilab E773/E731 regenerator experiments (SCHWIN-GENHEUER 95 [3] and GIBBONS 93 [4]), and the CPLEAR $K^0 - \overline{K}^0$ asymmetry experiment (ADLER 95B [5]) have very different dependences of ϕ_{+-} on Δm , as can be seen from their diagonal bands in Fig. 1. The region where the ϕ_{+-} bands from these experiments cross gives a powerful measurement of Δm which decreases the fitted Δm relative to our pre-1996 average Δm and earlier measurements such as CULLEN 70 [6], GEWENIGER 74C [7], and GJESDAL 74 [8]. This decrease **Figure 1:** ϕ_{+-} vs Δm . Δm measurements appear as vertical bands spanning $\Delta m \pm 1\sigma$, some of which are cut near the top to aid the eye. The ϕ_{+-} measurements appear as diagonal bands spanning $\phi_{+-} \pm \sigma_{\phi}$. The dashed line shows ϕ (superweak). The ellipse shows the 1σ contour of the fit result. See Table 1 for data references. brings the Δm -dependent ϕ_{+-} measurements into good agreement with each other and with ϕ (superweak), where $$\phi(\text{superweak}) = \tan^{-1} \left(\frac{2\Delta m}{\Delta \Gamma} \right) = \tan^{-1} \left(\frac{2\Delta m \tau_S \tau_L}{\hbar (\tau_L - \tau_S)} \right) . \quad (1)$$ **Table 1:** References and location of input data for Fig. 1 and Fig. 2. Unless otherwise indicated by a footnote, a check (\checkmark) indicates that the data can be found in the ϕ_{+-} or Δm sections of the K_L Particle Listings, or the τ_S section of the K_S Particle Listings, according to the column headers. | Locat | tion of | f input | data | | | |------------------------|--------------|------------------------|--------------|-------------------|------| | Fig. 1 Fig. | | ;. 2 | | | | | $\overline{\phi_{+-}}$ | Δm | $\overline{\phi_{+-}}$ | $ au_S$ | PDG Document ID | Ref. | | \checkmark | √* | √ | √* | CAROSI 90 | [1] | | \checkmark | | à | \checkmark | GEWENIGER 74B | | | \checkmark | | \checkmark | | ADLER 95B | | | \checkmark | √‡ | à | \checkmark | CARITHERS 75 | [10] | | \checkmark | \checkmark | \checkmark | \checkmark | SCHWINGENHEUER 95 | [3] | | \checkmark | | \checkmark | \checkmark | GIBBONS 93 | [4] | | | \checkmark | | | GIBBONS 93C | [11] | | | \checkmark | | | ADLER 95 | [12] | | | \checkmark | | | GJESDAL 74 | [8] | | | \checkmark | | | GEWENIGER 74C | [7] | | | \checkmark | | | CULLEN 70 | [6] | | | | | \checkmark | ARONSON 76 | [13] | | | | | \checkmark | GROSSMAN 87 | [14] | | | | | \checkmark | SKJEGGESTAD 72 | [15] | | | | | \checkmark | BERTANZA 97 | [9] | ^{*} from $\phi_{00}(\Delta m, \tau_{\scriptscriptstyle S})$ in ϕ_{00} Particle Listings. The (ϕ_{+-}, τ_S) correlations influence the τ_S fit result in a similar manner, as can be seen in Fig. 2. The influence of the ϕ_{+-} experiments is not as great on τ_S as it is on Δm because the indirect measurements of τ_S derived from the diagonal crossing bands in Fig. 2 are not as precise as the direct measurements of τ_S from E773 (SCHWINGENHEUER 95 [3]), E731 (GIBBONS 93 [4]), and NA31 (BERTANZA 97 [9]). [†] from $\phi_{+-}(\Delta m)$ in ϕ_{+-} Particle Listings. $^{^{\}ddagger}$ from $\tau_{\scriptscriptstyle S}(\Delta m)$ in $\tau_{\scriptscriptstyle S}$ Particle Listings. Figure 2: ϕ_{+-} vs τ_S . τ_S measurements appear as vertical bands spanning $\tau_S \pm 1\sigma$, some of which are cut near the top to aid the eye. The ϕ_{+-} measurements appear as diagonal bands spanning $\phi_{+-} \pm \sigma_{\phi}$. The dashed line shows ϕ (superweak). The ellipse shows the fit result's 1σ contour. See Table 1 for data references. In Fig. 1 [Fig. 2] the slope of the diagonal ϕ_{+-} bands shows the Δm [τ_S] dependence; the unseen τ_S [Δm] dependent term is evaluated using the fitted τ_S [Δm]. The vertical half-width σ_{ϕ} of each band is the ϕ_{+-} error for fixed Δm [τ_{S}] and includes the systematic error due to the error in the fitted τ_{S} [Δm]. Table 2 gives the resulting fit values for the parameters and Table 3 gives the correlation matrix. The resulting ϕ_{+-} is in good agreement with $\phi(\text{superweak}) = 43.50 \pm 0.08^{\circ}$ obtained from Eq. (1) using Δm and τ_S from Table 2. **Table 2:** Results of the fit for ϕ_{+-} , ϕ_{00} , $\phi_{00} - \phi_{+-}$, Δm , and τ_s . The fit has $\chi^2 = 15.4$ for 18 degrees of freedom (22 measurements -5 parameters +1 constraint). | Quantity | Fit Result | |--------------|---| | ϕ_{+-} | $43.5 \pm 0.6^{\circ}$ | | Δm | $(0.5301 \pm 0.0014) \times 10^{10} h \text{ s}^{-1}$ | | $ au_{S}$ | $(0.8934 \pm 0.0008) \times 10^{-10} $ s | | ϕ_{00} | $43.4 \pm 1.0^{\circ}$ | | $\Delta\phi$ | $-0.1 \pm 0.8^{\circ}$ | **Table 3:** Correlation matrix for the fitted parameters. | | ϕ_{+-} | Δm | $ au_{S}$ | ϕ_{00} | $\Delta \phi$ | |------------------------|-------------|------------|-----------|-------------|---------------| | $\overline{\phi_{+-}}$ | 1.00 | 0.72 | -0.35 | 0.60 | -0.02 | | Δm | 0.72 | 1.00 | -0.22 | 0.48 | 0.04 | | $ au_S$ | -0.35 | -0.22 | 1.00 | -0.18 | 0.04 | | ϕ_{00} | 0.60 | 0.48 | -0.18 | 1.00 | 0.79 | | $\Delta \phi$ | -0.02 | 0.04 | 0.04 | 0.79 | 1.00 | The χ^2 is 15.4 for 18 degrees of freedom, indicating good agreement of the input data. Nevertheless, there has been criticism that Fermilab E773 (SCHWINGENHEUER 95 [3]) and E731 (GIBBONS 93 [4]) measure $\phi_{+-} - \phi_f$ and calculate the regeneration phase ϕ_f from the power law momentum dependence of the regeneration amplitude using analyticity and dispersion relations. In the E731 result, a systematic error of ± 0.5 degrees for departures from a pure power-law is included. For the E773 result, they modeled a variety of effects that do distort the amplitude from a pure power law and ascribed a $\pm 0.35^{\circ}$ systematic error from uncertainties in these effects. Even so, the E731 result remains valid within its quoted errors. KLEINKNECHT 94 [16] and KLEINKNECHT 95 [17] argue that these systematic errors should be around 3°, primarily because of the absence of data on the momentum dependence of the regeneration amplitude above 160 GeV/c. BRIERE 95 [18] and BRIERE 95C [19] reply that the current understanding of regeneration is sufficient to allow a precise and reliable correction for the region above 160 GeV/c. The question is one of judgement about the reliability of the assumptions used. In the absence of any contradictory evidence, we choose to accept the judgement of the E731/E773 experimenters in setting their systematic errors. A similar analysis has been done by the CPLEAR Collaboration [20]. The small differences between their results and ours are due primarily to different treatments of τ_S . Their fit constrains τ_S to the PDG 1994 value, while our fit includes the more recent SCHWINGENHEUER 95 [3] and BERTANZA 97 [9] τ_S measurements. Fit for $$\epsilon'/\epsilon$$, $|\eta_{+-}|$, $|\eta_{00}|$, and $\mathrm{B}(K_L \to \pi\pi)$ We list measurements of $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$ and ϵ'/ϵ . Independent information on $|\eta_{+-}|$ and $|\eta_{00}|$ can be obtained from measurements of the K_L^0 and K_S^0 lifetimes (τ_L, τ_S) and branching ratios (B) to $\pi\pi$, using the relations $$|\eta_{+-}| = \left[\frac{B(K_L^0 \to \pi^+ \pi^-)}{\tau_L} \frac{\tau_S}{B(K_S^0 \to \pi^+ \pi^-)} \right]^{1/2} ,$$ (2a) $$|\eta_{00}| = \left[\frac{\mathcal{B}(K_L^0 \to \pi^0 \pi^0)}{\tau_L} \frac{\tau_S}{\mathcal{B}(K_S^0 \to \pi^0 \pi^0)} \right]^{1/2} .$$ (2b) For historical reasons the branching ratio fits and the CP-violation fits are done separately, but we want to include the influence of $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$, and ϵ'/ϵ measurements on $B(K_L^0 \to \pi^+\pi^-)$ and $B(K_L^0 \to \pi^0\pi^0)$ and vice versa. We approximate a global fit to all of these measurements by first performing two independent fits: 1) BRFIT, a fit to the K_L^0 branching ratios, rates, and mean life, and 2) ETAFIT, a fit to the $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{+-}/\eta_{00}|$, and ϵ'/ϵ measurements. The results from fit 1, along with the K_S^0 values from this edition are used to compute values of $|\eta_{+-}|$ and $|\eta_{00}|$ which are included as measurements in the $|\eta_{00}|$ and $|\eta_{+-}|$ sections with a document ID of BRFIT 98. Thus the fit values of $|\eta_{+-}|$ and $|\eta_{00}|$ given in this edition include both the direct measurements and the results from the branching ratio fit. The process is reversed in order to include the direct $|\eta|$ measurements in the branching ratio fit. The results from fit 2 above (before including BRFIT 98 values) are used along with the K_L^0 and K_S^0 mean lives and the $K_S^0 \to \pi\pi$ branching fractions to compute the K_L^0 branching ratios $\Gamma(K_L^0 \to \pi^+\pi^-)/\Gamma(\text{total})$ and $\Gamma(K_L^0 \to \pi^0\pi^0)/\Gamma(K_L^0 \to \pi^+\pi^-)$. These branching ratio values are included as measurements in the branching ratio section with a document ID of ETAFIT 98. Thus the K_L^0 branching ratio fit values in this edition include the results of direct measurements of $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$, and ϵ'/ϵ . A more detailed discussion of these fits is given in the 1990 edition of this Review [21]. ## References - 1. R. Carosi *et al.*, Phys. Lett. **B237**, 303 (1990). - 2. C. Geweniger et al., Phys. Lett. 48B, 487 (1974). - 3. B. Schwingenheuer et al., Phys. Rev. Lett. **74**, 4376 (1995). - 4. L.K. Gibbons *et al.*, Phys. Rev. Lett. **70**, 1199 (1993) and footnote in Ref. [3]. - 5. R. Adler *et al.*, Phys. Lett. **B363**, 243 (1995). - 6. M. Cullen *et al.*, Phys. Lett. **32B**, 523 (1970). - 7. C. Geweniger *et al.*, Phys. Lett. **52B**, 108 (1974). - 8. S. Gjesdal *et al.*, Phys. Lett. **52B**, 113 (1974). - 9. L. Bertanza *et al.*, Z. Phys. **C73**, 629 (1997). - 10. W. Carithers et al., Phys. Rev. Lett. **34**, 1244 (1975). - 11. L.K. Gibbons, Thesis, RX-1487, Univ. of Chicago, 1993. - 12. R. Adler *et al.*, Phys. Lett. **B363**, 237 (1995). - 13. S.H. Aronson *et al.*, Nuovo Cimento **32A**, 236 (1976). - 14. N. Grossman *et al.*, Phys. Rev. Lett. **59**, 18 (1987). - 15. O. Skjeggestad *et al.*, Nucl. Phys. **B48**, 343 (1972). - 16. K. Kleinknecht and S. Luitz, Phys. Lett. **B336**, 581 (1994). - 17. K. Kleinknecht, Phys. Rev. Lett. **75**, 4784 (1995). - 18. R. Briere and B. Winstein, Phys. Rev. Lett. **75**, 402 (1995). - 19. R. Briere and B. Winstein, Phys. Rev. Lett. **75**, 4785 (1995). - 20. R. Adler et al., Phys. Lett. **B369**, 367 (1996). - 21. J.J. Hernandez et al., Phys. Lett. **B239**, 1 (1990).